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APPENDIX

NOTE ON SOME MATHEMATICAL MORTALITY
MCDELS

R. E. BEAarD
Pearl Assurance Co. Ltd., London

1. A satisfying basis for a law of mortality would be a formula
that, starting from some fundamental concepts about the biological
ageing process, led to a distribution of deaths by age which was
comparable with observational data. Such comparison would not be
simple and straightforward because environmental and secular
factors would introduce distortions as compared with the theoretical
underlying distribution.

2. In the course of numerical work, extending over a number of
years, on the expression of human mortality functions by mathe-
matical formulae, various attempts have been made by the writer
to develop an approach on this basis. The results obtained have not
led to any satisfying formulae, but they are suggestive of different
lines of approach and have been summarized below in the hope they
may be of value to others interested in the subject. The note follows
the sequence in which the ideas have developed in the mind of the
writer and leads from considerations based on the force of mortality,
e to those based on the curve of deaths, pl,.

8. The first mathematical expression which provided a reasonable
representation of the observed force of mortality in human data was

that first proposed by Gompertz (1825) and later modified by Make- .

ham (1867). Basically the “law” was derived by postulating a
relationship between the rate of change of the force of mortality at
any age and its value at that age. The next significant modification
to the Makeham law was the system of curves devised by Perks in
1982 and of which the important formula was the logistic. Many
human life-tables have been graduated by this basic curve, modified
in some instances to allow for special features of the data, particu-
larly at the younger and early middle ages, and the clear fact emerges
that adult human mortality can be very well represented by a
logistic curve of the form

pe ~ A = Be*[(14+De>) (1)
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which will be referred to as a Perks curve since this is the name by
which it is generally known by actuaries (Perks, 1982; Beard, 1986,
1989a, 19514, 1952a; Registrar General, 1951; Mortality of Assured
Lives, 1956).

4. Now p, is the ratio of the ordinate at age z of the curve of
deaths to the area under the curve above age 2. We may look upon
the curve of deaths as a frequency distribution of deaths by age at
death and for many types of frequency curves it will be found that
this ratio has a sigmoid form. It is not apparent whether the satis-
factory representation of p, by a Perks curve is because the formula
has a theoretical significance or because the formula does provide a
good approximation to the particular function of a family of fre-
quency curves which can be used to represent the distribution of
deaths by age (Perks, 1958).

5. What evidence is available tends to support the idea that the
force of mortality does not continue to increase indefinitely with age.
The concept of a limiting age by which all individuals must be
dead (i.e. a maximum lifespan) does not seem to be in accordance
with the facts—the use of a limiting age as a mathematical device
to cut off a long slender tail has nothing to do with the present dis-

" cussion. Formula (1) leads to an upper limit of B/D for u, and it is

not without interest to note that the numerical values of B/D
obtained from the graduation of human mortality data are of the
same order as the force of mortality which can be deduced from select
mortality tables as being appropriate to *“damaged lives”, i.e. about
0-57 (Beard, 1951b).

6. If the rapidly decreasing mortality associated with the infantile
and growth period be ignored the pattern of human mortality then
exhibits a basic sigmoid form on which are superimposed waves and
other disturbances. The waves appear to be due largely to secular
effects (e.g. selective effect of war deaths); the main disturbances

. are those arising from accidental deaths and the (rapidly disappear-

ing) hump at the early adult ages from deaths from tuberculosis.

7. For a broad mathematical approach we will be concerned with
(a) accidental deaths (assumed to be at a constant rate at all ages),
(b) an upper limit to the rate of mortality, and (c) a progression in
time.

Gompertz’ law arises by using condition (c) only,

, ie. dujdr = Ms, whence p, = Be* (2)

Makeham’s law arises by using conditions (a) and (c),

ie. dp/dz = MNp,—A)  whence p, = A+Be> (8)
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Perks’ law arises by using conditions (a), (b) and (c),
ie. dufdz = Ap,—A)(E—p)(E—-A)

_ (E-4)De>
_A-i-W (4)

The Perks (logistic) relation can be expressed as stating that the
rate of change of p, is proportional to the product of its value and the
amount by which it falls short of its upper limiting value.

8. If the requirement of a constant upper limit for the rate of
mortality is relaxed other formulae can be developed on similar lines
to those of the preceding paragraph. For example,

duy _ Ap—d) _
& = it Blp—4) gives w,e"s = Ce>

whence p,

where w, = B (u,—A4) (5)
and

M (143572)

de 2D
(1 +-B—/.t,—A)
gives y,=4+5,(-1+vm) ©)

Formula (6) is equivalent to a continued fraction form for y,, i.e.
Be*

A+—pa
S T

and the relationship between formulae (2) to (6) is clearly seen by
expanding the expressions for p, in terms of powers of &, i.e.

formula (2) gives Be*
» (8) , A+Be*
w (4) ,, A+Be*—~BDe™4+BD*e™ —. . .
w (8) s, A+Be*—BDe™+§BD > —. ..
w (6) ,, A+Be*~BDe™2BD3g™ —. . .
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9. The differences between formulae (4), (5) and (6) will become
apparent only at the old or very old ages and unless the data were
extensive the differences would be unlikely to be significant for many
numerical processes. From a scientific point of view the models are,
of course, quite different.

10. An alternative approach to the question, but still based upon
rates of mortality, is to determine the conditions necessary for y, to
be a Perks (logistic) curve, given that the population can be stratified
according to a longevity factor and that the basic mortality law is
Makeham in form (Beard, 19525). Thus let u{ be the force of mortality
at time ( =age) k for the group having longevity factor s and let ¢(s) ds
be the proportion of the initial population having factor s. Then the
survivors of ¢(s) ds at time k are

$(s) da. exp (- [[ prd) ™
and the total survivors at time &
L= [ $(6) exp (= [} pde)ds (8)

where the integral is taken over the whole range of s.
The force of mortality at time k (= —d log },/dk) is then

_[#omexp(= [ pd) as
T T ey exp (= [ pae) ds

11. From formula (9) it will be noted that g, is a weighted mean
of p4 (= uj say). Since the number of lives with heavier mortality
will diminish more rapidly than those with lighter mortality, s will
decrease with increasing k. If the basic mortality is Makeham in
form, then dy,/dk will show a slackening off at the higher ages, i.e.
the sigmoid feature shown by a logistic curve. In order to meet
practical conditions some limitations are necessary on the form of
#(s); the lower limit must be > 0, but the upper limit can be .

12. If it be assumed that ¢(s) is a gamma function such that
$(8) ds = ks* e ds (0 < 8 < ) and that the mortality function for
&(8) is p} = a+Ps ¥, we have ,

B j: ks? e(a+Bs ) exp(-f: (at+Bs e¥) dt) ds
- J’: ks* e exp(—J‘: (x+pBs €¥) dt) ds

(9)

(10)

1]
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which reduces to

(p+1)BAre*
= AR R o

which is a Perks (logistic) form.

18. The results of the immediately preceding paragraphs are

interesting in that the limiting value of y, arises from the manner in
which the “mixed” population runs off. They have a certain appeal
in that they are based on the assumption that the population is not
homogeneous in regard to a mortality (or longevity) factor and that
the mortality for an individual group continues to increase indefi-
nitely. The limiting value of y,—a as k—o from formula (11) is
(p+1)A = 4A/B, where B, is the Pearson moment function of ¢(s).
For human lives u, ~ 06 at the limit, according to one fairly recent
mortality table, and A ~ 0-1 so that By ~ 0-67, i.e. a skew distribu-
tion with a tail towards the higher values of s. If s is a heredity
factor, then stability of ¢(s) over generations would imply fertility
rates negatively correlated with longevity, otherwise the shorter
reproductive period of those with higher values of s would lead to a
falling average value of s in the population. It is an interesting co-
incidence that the distribution of married women according to
number of children born has a B, coefficient of the order of 0-7
(Papers of Royal Commission on Population, 1950).

14. The assumption of other forms for ¢(s) in formula (9) leads to
other forms for p, which can have the appropriate shape but which
are not convenient mathematically, and no experiments have been
made in this direction.

15. From the point of view put forward in paragraph 1 formula
(10) suffers from the objection that it is based on the assumption of
a Makeham law, and is thus basically empirical. A further approach
to the question is to build up models based on the so-called “shot
hypothesis” in which individuals are assumed to be subject to
random firings and are assumed to die when they have been “hit”
a specified number of times. Two main types of model have been
investigated, which are referred to below as the “forward” and
“backward” models respectively. In the forward model hits are
assumed to accumulate and death to occur when the total reaches a
certain figure. In the backward model the individual is assumed to
start with a quota of units which are progressively lost in time,
death occurring when the total remaining falls below a certain
figure. -

16. The simplest forward model is derived by assuming that the
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chance that an individual is hit in an interval d¢ is p; this leads to a
difference-differential equation

o

& e _plrep (12)

where If represents the number at time ¢ who have been “hit” «
times. If /, is the number of individuals at time o then a solution of
equation (12) is

I =1 e (pt)/a! (18)

If the number of hits causing death is 7, then the survivors at time ¢
are

L=Ler{1+(pt)11+ ... +(pty/(r—1)1}
and the deaths in the interval ¢ to ¢+ di
el =1, e pt-tf(r—1)! (14)
The force of mortality at time ¢ is

n:=(7p%g/{l+%"'+(%}

= pe(pty[" et do (15)

Formula (15) shows that the curve of deaths is an incomplete gamma
function, or a Pearson type III curve. y, has the value 0 for =0
and asymptotes to a value p at ¢ = o (Beard, 1989b).

17. A more natural function than g, in the present context is to
use the function which bears the same relationship to 1, as u, does to
l, ie.

dllogpl) _ 1dy,
dt Y F"(':

and from formula (14) we find this to be

d(l%l"") = _p+':_! (16)

18. Attempts to use the formula of paragraph 16 on human
mortality data have been unsuccessful, the shape of d(log g,1)/d¢ not
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fitting well to observed values which show a negative second dif-
ferential coefficient over the adult ages.

19. As an extension of formula (12) a model can be set up in
which the “hits” in an interval can be single, double, etc., in known
proportions. The basic relation then takes the form

ar
% = —Pl+p B S (17)
This can be integrated to
It = e [ pe" 3 f(r) 1 dt (18)

and by noting that I = ¢*1, values of I* can be obtained by succes-
sive integration. No experiments have been made using this form,
mainly because the form of d(log ,1,)/d¢ seems to be unsuitable for
human data. The form of f(r) is also speculative.

20. A different forward model can be devised in which the proba-
bility of & “hit” is dependent on the number of “hits” recorded
already. We then have the following

& e —(Btp) P (Bp T I 19)

This can be integrated to give
(B+po)t
- l—%m (Q) (1-4-5) . (cc—~1+E) (e*~1)*  (20)

p)\""p P
with

d(log 1, —T -1)pe*

dogrl) _ _(p1a=ip) 42 1pe (21)

Here again the form of equation (21) does not accord with observa-
tions from human data.

21. In the attempts to fit these forward type formulae to human
data it was found (Beard, 1950, 1952¢) that satisfactory numerical
results could be obtained by expressing ., in gamma function form
subject to a terminal age w, i.e. the infinite tail of the curve is the
opposite way round to what would be considered natural. This
formula, after elimination of a constant element representing
accidental mortality, can be derived from the difference-differential
equation

dla
= = ph—pi? , (22)
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the solution of which leads to

¢ =1, e {p(w—1) }*/a! (28)
from which

dlogpl) _ a1
a PToT

if the deaths occur at the ath hit. In this formula p ~ 0-8, « ~ 11
and w ~ 110 for human mortality.

22. No obvious physical model applies to equation (22), but the
relationship can be written in the backward form

dly _ @ gy e+l gy,
in which the rate at which a unit is lost is proportional to the number
of units remaining divided by the years of life remaining to the final
age w. From a biological point of view the concept of a final age by
which the organism must be dead is unsatisfactory, but the fact that
satisfactory numerical results arise only from a backward formula
suggests that a closer study of this type of model might be more

profitable. ) i i
28. The simplest backward model arises from the relationship
= —pltapth (25)

where the organism is assumed to lose a unit at rate p.
This has a solution

12 =l e (pty*/(n—a)! v (26)

where 7 is a maximum number of units. If death is assumed to occur
when the number of units falls below 7, we have

ol gz /e

This is of similar form to equation (16) and is not suitable for human

data. :
24. By assuming that the rate of loss of a unit is proportional to
the number of units remaining the relation

B e —pB+a) Bt p(B et B (28)
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may be set up. This has the solution

1% = e%f(1+ D eyptat (29)
If death occurs when the units fall below «, we have

L = X I} = k/(1+Derypt

= 1, D1+ D)1+ Dep+s (30)
We also have :
dlogpl)  (B+a+1) pDe
d —PTTTI¥De (1)
and
_ p(B+a)De”
=T 1¥De (82)

We have now found a difference equation model which leads to a
Perks (logistic) formula for u,. In formula (81) the upper limit of g, is
p(B+a); p ~ 0-1 and the limit ~ 0-7 so that (B+a) ~ 7.

25. The distribution of « in the population at age 0 implied by
equation (29) is a decreasing geometrical progression, i.e.

D D D
1+D’ (14+D)” "' (1+D)*

For human mortality D is small (of the order of 10-*) so that the dis-
tribution is very slowly decreasing with increasing «.

26. The significant result which emerges from the experiments
made along these lines is that to provide results which have some
reasonable semblance to observed human mortality the backward
type of model has to be adopted. This is consistent with death
being regarded as the culmination of a degenerative process such
that death occurs when the organism reaches a certain level of
degeneration. The mathematical models are based on numerical
results for adult ages and interpolation back to birth is possibly a
questionable process, a more suitable approach being to regard the
life and death process as a period during which tﬁe organism is
building up to a complex situation with a subsequent degeneration.
This would lead to models in which the whole of life process would
be looked upon as the resultant effect of two opposing forces.
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27. Calculation of the moments of the distribution of deaths by
age for a population of mice (Greenwood, 1928) shows that a Pearson
type III (gamma function) would give a fair representation, but, as
with the human data, the curve is the “opposite way round”, i.e.
subject to a terminal age. By inference the Perks (logistic) curve
would give a fair representation of this data. No calculations have
been made on animal data or on physical objects such as electric
light bulbs and motor cars (e.g. Cramer, 1958) but it would seem
worth while trying to find out if observed data of this latter type
would distinguish between the two types of processes.
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