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Abstract. The purpose of this paper is to determine whether human longevity is
inherited more strongly along the maternal line (consistent with cytoplasmic
mitochondrial inheritance) or there is a predominance of paternal longevity influence
(expected as a result of hemizygosity of genes on sex chromosomes in males). For this
purpose the genealogical longevity data on European noble families were analyzed for
adults (30 years and above) born in 1800-1880. Employing data on more than 800 noble
families, we apply multiple linear regression model using 3 independent predictors for
offspring life span: paternal age at death, maternal age at death and sex-specific cohort
life expectancy. It is found that both paternal and maternal longevity have a positive
statistically significant effect on offspring life span. The paternal effect (regression slope)
is higher than maternal one at any level of parental longevity and is particularly strong for
sons, supporting the hemizygosity hypothesis.
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Introduction

In order to understand the mechanisms of human longevity it is important to know the
mode of its inheritance. For example, specific transmission of human longevity from
father to son only might indicate that human longevity genes are located in Y
chromosome. In the case of specific transmission of human longevity from father to
daughter only, one may suggest that longevity genes are located in X chromosome since
only daughters inherit this chromosome from the father. Strong maternal effect for
inheritance of human longevity might indicate the involvement of mitochondrial DNA,
since it is inherited from maternal side only. Thus, it is very important to find out what is
the relative contribution of maternal and paternal longevity into sons' and daughters' life
span and to compare these observations with different models and hypotheses of
longevity inheritance.

Studies of familial effects on human longevity have a long history. Next year the
scientific community will celebrate the 100th anniversary for the first systematic studies
on familial determinants of human longevity. In 1899 the founder of biometrics, Karl
Pearson (1857-1936) and his student, Mary Beeton published the very first study on the
inheritance of human longevity (Beeton and Pearson, 1899). They analyzed the
correlation of parent/child ages at death, based on English genealogies going back to the
17th century (three series of data were taken from the English Peerage and Landed
Gentry). Owing to the limitations of their data, Beeton and Pearson dealt with only the
adult males age 20 and over. Their second study (Beeton and Pearson, 1901) was based
upon more extensive pedigree records of the members of the English Society of Friends
and of the Friends’ Provident Association (these data included both males and females of
all ages). Using such data, Beeton and Pearson (1901) measured the correlation for ages
at death not only for parent/child pairs, but also in the siblings. As a result of their
studies, Beeton and Pearson concluded that “the expectation of life is seriously modified
by the ages of death of the relatives.”

The problem of familial transmission of human longevity was also examined by such
outstanding investigators as the telephone inventor Graham Bell (1918) on genealogical
data of about 3,000 members of the Hyde family in New England and by one of the
founders of biodemography, Raymond Pearl (Pearl, 1931; Pearl, Dewitt, 1934; Pearl and
Pearl, 1934) who initiated the famous Baltimore Longevity Study.

Following these initial studies on familial transmission of human longevity early in
the century, a number of scientists have since devoted their attention to this topic (Wilson
and Doering, 1926; Holmes, 1928; Yuan, 1931; Preas, 1945; Dublin et al., 1949;
Jalavisto, 1951; Cohen, 1964; Hawkins et al., 1965; Abbott et al., 1974; 1978; Murphy,
1978; Philippe, 1977; 1978; 1980; Welter, 1978; Wyshak, 1978; Glasser, 1981; Crawford
and Rogers, 1982; Swedlund et al., 1983; Vandenbroucke et al., 1984; Desjardins and
Charbonneau, 1990; Bocquet-Appel and Jakobi, 1990; 1991; Brand et al., 1992; Mayer,
1991; Robine and Allard, 1997; Tallis and Leppard, 1997).

In addition to traditional familial longevity studies, one of the most powerful
approaches for assessing genetic and cultural contributions to inter-individual variation in
human life span has also been done – the evaluation of the relative longevity of twins
(Kallman and Sander, 1948; 1949; Kallman, 1957; Jarvik et al., 1960; Harvald and
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Hauge, 1965; Wyshak, 1978; Hrubec and Neel, 1981; Carmelli, Andersen, 1981;
Carmelli, 1982; Hrubec et al., 1984; Hayakawa et al., 1992; McGue et al., 1993;
Herskind et al., 1996; Yashin and Iachine, 1997).

Studies on the longevity of adopted children were also made and have demonstrated
the importance of longevity of the biological parents in predicting offspring longevity
(Sorensen et al., 1988; Sorensen, 1991; Nielsen et al., 1992).

Does this brief historical review of scientific literature on familial longevity suggest
that all of the concepts, methodology and conclusions have already been established?
Surprisingly this seems not to be true, since there is still no consensus even for the most
fundamental issues regarding familial longevity. For example, the role of genetics in
familial longevity resemblance was challenged by some authors (Murphy, 1978; Philippe,
1978; Jacquard, 1982) who have found very weak familial resemblance and emphasized
the importance of social explanations. The mode of longevity inheritance in humans is
also not yet determined and there is still a controversy on the relative importance of the
maternal versus paternal longevity influence on offspring life span. Is human longevity
inherited more strongly along the maternal line (consistent with cytoplasmic,
mitochondrial inheritance – Sont and Vandenbroucke, 1993; Wallace, 1995) as would
appear to be demonstrated in many studies (Pearl, 1931; Jalavisto, 1951; Abbot et al.,
1978; Brand et al., 1992)? Or, on the contrary, is there a predominance of paternal
longevity influence on offspring life span as suggested in other studies (Bell, 1918;
Cohen, 1964; Philippe, 1978; Welter, 1978; Bocquet-Appel and Jakobi, 1990)?

There are at least two possible flaws in previous studies on this topic that could lead
to existing controversies and biased estimates of life span heritability. First, in some
studies the birth cohorts were not extinct by the date of data collection (Beeton and
Pearson, 1899; 1901; Bell, 1918; Hawkins et al., 1965; Abbott et al., 1973; Murphy,
1978). For this reason the data was biased in favor of shorter-lived persons, because the
life span data for longer-living persons was not yet available by the time of data
collection (longer-living persons were still alive). The importance of this problem has
already been discussed in the scientific literature (Yuan, 1932). Moreover, for those
family members whose birth date is close to the truncation date, only the short-lived
persons will be included in the analysis, thus producing a spurious correlation between
ages at death for short-lived relatives. For this reason, in our study we analyzed only
extinct birth cohorts (for people born before 1880).

Another possible flaw of previous studies is the lack of proper control for historical
changes in human life expectancy. When the data for families (parents and their children)
that lived in different historical periods are mixed in one sample and analyzed together, a
spurious artifact correlation between relatives’ life span is produced (since life
expectancy in early historical periods was low both for parents and their children relative
to more recent time periods). That is why the estimates of familial aggregation of human
longevity are biased (overstated) in earlier studies not controlled for secular effects
(Beeton and Pearson, 1899; 1901; Bell, 1918; Jalavisto, 1951). Moreover, since the
secular trends for male and female life span are different, a spurious gender difference in
familial transmission of human longevity could be produced in such uncontrolled studies.
Some authors tried to regress out the secular effects by introducing the calendar year of
death as a covariate in a multivariate analysis (Wyshak, 1978; Bocquet-Appel and Jakobi,
1990). Since the calendar year of death tends to be higher for longer-lived people (the
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more you live the later you die), this procedure could decrease not only the noise (secular
effects), but also the signal itself (human longevity). Attempts were also made to use the
calendar year of birth to control for secular effects, but this variable made virtually no
contribution into regression fitting (Wyshak, 1978). In order to resolve this problem we
propose to use a novel and what we believe is an improved method for data analysis that
allows for the control of strong and complex historical changes in cohort life expectancy
(Gavrilov and Gavrilova, 1997b; Gavrilov, Gavrilova et al., 1997b; 1998a; 1998b;
Gavrilova et al., 1997a; 1997b; 1998). Our new method is based on the idea of an internal
control variable: the sex-specific life expectancy for each birth cohort is calculated and
included in the analysis as an independent covariate, so that any historical trends and
fluctuations in human life expectancy are regressed out (Gavrilov, Gavrilova et al.,
1998a; 1998b; Gavrilova et al., 1997b; 1998).

Data and Methods
Data Sources. There are two mutually exclusive constrains that should be taken into

account in familial longevity studies. First of all, the data for those born in 20th century
should be excluded from the analysis in order to avoid false familial resemblance caused
by life span bias in truncated, not extinct birth cohorts. At the same time, the data
collected in the pre-antibiotic era and particularly in the pre public health era is
considered to be irrelevant to current low mortality populations (Cohen, 1964; Smith,
1993), since everything was quite different in the past (high mortality from infectious
diseases and tuberculosis in particular, under-nutrition and sometimes even starvation
(Fogel and Costa, 1997), high poverty rate and poor sanitary conditions, high seasonal
mortality in winter period).

There is however one fortunate exception that fits the purpose of this project –
socially elite royal and nobility families. We have found that the modal age at death for
parents in these socially elite families in 19th century is remarkably high (70-75 years for
fathers and 75-80 years for mothers) and comparable with modern low mortality
populations.

Another important advantage of this kind of data is its high reliability, accuracy and
completeness, since data on noble families was recorded in great detail for many
centuries. Also, since this privileged social group lived in rather favorable conditions for
many centuries, one could expect less influence of adverse social factors (poverty, for
example) on life span and hence lower bias caused by these factors. This kind of data
allows us to minimize the social heterogeneity of the population under study and to avoid
overstating the familial component of longevity when a mixture of families with different
social status is analyzed. Thus, although the sample analyzed in this study is biased
towards higher social status and does not represent the whole human population, it is the
best possible sample where the effects of population heterogeneity are minimized with
regard to social status. Also, all the cases of familial inbreeding are well documented for
noble families, so these cases could be studied separately or excluded from the analysis.

In this study we have computerized and analyzed genealogical data on longevity in
European noble and royal families published in “Genealogisches Handbuch Des Adels”
(1980-1994) and in other professional genealogical sources, listed elsewhere (Gavrilov,
Gavrilova et al., 1996).
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Offspring longevity was analyzed for adults (those who survived by age 30) in order
to eliminate the possible bias in longevity estimates associated with high infant mortality
rates and high proportion of premature deaths at young ages due to infectious diseases
and violence observed in the 19th century.

Extinct Birth Cohorts. The major bias of genealogical data is observed for those
birth cohorts that are not extinct by the date of data collection. Such data is biased in
favor of shorter living persons because the lifespan data for longer living persons are not
yet available by the time of data collection (longer living persons were still alive).

The shorter the time interval between the birth year for the particular birth cohort and
the year of data collection, the stronger is the bias (because of higher truncation rate).
Thus, for more recent birth cohorts the mean life span level is more and more
underestimated and this increasing bias will decrease the estimate for real historical
improvement in human life expectancy – perhaps even imitating a catastrophic life
shortening for the most recent generations. Moreover, for those family members whose
birth date is close to truncation date, the short-lived persons only will be included into
analysis, thus producing spurious correlation between ages at death for short-lived
relatives. In our study the data for offspring born in the 20th century were excluded from
the analysis in order to have unbiased estimates of longevity for extinct birth cohorts.
The data for offspring born before the 18th century were also excluded in this study in
order to minimize the heterogeneity of the study population. Thus, in order to avoid
possible biases described above, the data for the offspring born in 1800-1880 only were
used in this study.

Adjustment for Historical Trends and Fluctuations in Human Mortality. A new
improved method for data analysis has been used in this study that allows us to study
familial determinants of human longevity controlling for strong and complex historical
changes in life expectancy for birth cohorts (Gavrilov and Gavrilova, 1997b; Gavrilov,
Gavrilova et al., 1997b; 1998a; 1998b; Gavrilova et al., 1997a; 1997b; 1998). In previous
studies by other authors the historical changes in life span were often ignored or
controlled in a crude way by assuming a strictly linear trend for life expectancy as a
function of proband’s calendar year of birth or death. Our method is based on the idea of
an internal control variable: the sex-specific life expectancy for each birth cohort is
calculated and included in the analysis as an independent covariate, so that any historical
trends and fluctuations in human life expectancy are regressed out (Gavrilov, Gavrilova
et al., 1998a; 1998b; Gavrilova et al., 1997b; 1998).

For each birth cohort the sex-specific mean expectation of life at age 30 was
calculated and used as a dependent variable in multiple linear regression to control for
cohort and secular effects on human longevity.

Coping with sex bias. In most genealogical books and databases the sex bias is
usually observed - the number of complete records (both birth and death dates available)
for males is higher than for females (biased sex ratio). Since genealogical records are
focused on family names which are transmitted by males only, women could be lost by
genealogists when they marry and change their family names (Wyshak, 1978). In the
present analysis of longevity, there is no reason to believe that women about whom
information is not recorded differ from those whose records have been traced. In
addition, the main focus of the analysis was based on comparisons, thus eliminating
problem that may relate to representativeness (in the statistical sense) of the data.
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Nevertheless a special efforts were made in this study in order to minimize the sex bias
and its possible influence on final conclusions: the data for different families were
computerized and cross-checked in order to find complete records (death dates in
particular) for those women who changed their family names and were lost.

Characteristics of multiple linear regression. Data on European royal and noble
families was analyzed for adults (30 years and above) born in 1800-1880. For each birth
cohort the mean sex-specific expectation of life at age 30 was calculated and used as an
independent variable in multiple linear regression to control for cohort and secular trends
and fluctuations in human longevity. The parameters of multiple linear regression were
calculated using SPSS statistical package (Norusis, 1985). Offspring longevity for each
particular sex (8,228 records for males and 3,222 records for females) was considered as
a dependent variable in multiple linear regression model and a function of 3 independent
predictors: paternal age at death, maternal age at death and sex-specific cohort life
expectancy. The data analysis was made for 6 overlapping ranges of parental (both
paternal and maternal) ages at death: 30 years and above (30+), 40+, 50+, 60+, 70+ and
75+ (see Tables 1-4).

Results and Discussion
The results of the study on the dependence of sons' life span as a function of paternal and
maternal life span are presented in Table 1. There are 8,228 cases of life span data for
combinations "son-father-mother" (both parents lived at least 30 years) that allowed to
calculate the multiple regression slopes for paternal effect (+0.089 ± 0.012) and maternal
effect (+0.030 ± 0.010) on sons' longevity. Note that the regression slopes are rather
small - 10 additional years of paternal life span will increase the mean life span of sons
by only 0.89 ± 0.12 years, while maternal effect is even weaker: 0.3 ± 0.1 year of
additional life span (for sons) for 10 additional years of maternal life span.

This weak resemblance between offspring and parental life span is consistent with
results obtained by other authors (Murphy, 1978) and could explain partially the previous
controversial results for maternal and paternal effects on human longevity. Since the
familial resemblance is rather weak, while life span itself is characterized by high
variability, quite different results and conclusions could be obtained just because of
random fluctuations (unless very large sample size is studied). However in this study the
sample size is large enough (8,228 cases) to find out that the paternal effect is 3 times
higher than the maternal one and this difference is statistically highly significant
(p<0.001, see Table 1).

It might be interesting to check whether the obtained result and conclusion is robust to
sample variation and to parental life span ranges in particular. For this purpose those
cases when at least one parent died prematurely (before age 50) were excluded from the
analysis and the remaining 6,211 cases were re-analyzed (Table 1). In this case the
paternal effect on sons' life span (+0.113 ± 0.018) is almost twice higher than the
maternal one (+0.063 ± 0.017) and this difference is statistically significant (p<0.05, see
Table 1). Studies of other sub-samples (with other ranges for parental life span) have
demonstrated that paternal effects are always higher than maternal ones, although this
difference is sometimes not statistically significant, probably because of smaller sample
size (Table 1). Further studies in this direction are planned that will allow to increase the
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sample size significantly and to check whether for longer lived parents the preferential
paternal inheritance of sons' life span is also observed.

A similar data analysis made for daughters (3,222 cases) has produced somewhat
different results (Table 2). The paternal effect (+0.047 ± 0.020) is virtually the same as
maternal one (+0.045 ± 0.017), so no preferential paternal inheritance of life span is
detected in the case of daughters. This mode of life span inheritance is consistent with
polygenic model of life span inheritance when genes affecting life span are located on
autosomes rather than sex chromosomes. There is however one interesting exception in
our results that is not consistent with autosome mode of life span inheritance - in those
cases when each of the parents lives 70+ years (863 cases), the paternal effect (+0.344 ±
0.081) is more than 5 times higher than maternal one (+0.062 ± 0.079) and this difference
is statistically significant (p<0.05, see Table 2). Further studies on larger sample sizes
will allow to clarify whether it is a real phenomenon or a result of random fluctuation in
this particular sub-sample. It should be noted however that in all 6 sub-samples studied
the maternal effect was never significantly higher than the paternal one (Table 2).

The results obtained in this study do not support the hypothesis of preferential maternal
inheritance of human longevity - in fact the opposite phenomenon is observed for sons
(preferential paternal inheritance). This might be a true biological (or social) phenomenon
or an artifact caused by gender differences in human longevity (women live longer, so the
maternal life span has wider range for variation than the paternal life span). In order to
control for gender differences in life span variation the variables should be normalized
and the standardized regression slopes (beta-coefficients) should be calculated (Norusis,
1985). The results of this kind of analysis are presented in Tables 3 and 4.

Normalization of the data did not change the results for sons' life span - the
standardized paternal effect (+0.079 ± 0.011) was as twice as higher than the
standardized maternal effect (+0.032 ± 0.011) and this difference was statistically highly
significant (p<0.01, see Table 3). For each of 6 sub-sample studies the standardized
paternal effect was higher than the standardized maternal one, although further increase
in sample size is important to check the statistical significance of this difference in the
case of longer lived parents.

In the case of daughters the normalization of data also does not change significantly the
previous results and conclusions (see Table 4). Again for the sample of 3,222 cases the
standardized paternal effect (+0.038 ± 0.016) is essentially the same as the standardized
maternal effect (+0.046 ± 0.017) - the difference between paternal and maternal effects is
statistically insignificant (Table 4). Normalization of the data also did not change the
exceptional result obtained for parents lived 70+ years: the standardized paternal effect
(+0.135 ± 0.032) is 5 times higher than standardized maternal effect (+0.025 ± 0.032) and
this difference is statistically significant (p<0.05, see Table 4).

The method of multiple linear regression used in this study is based on the assumption
that the paternal and maternal effects on offspring longevity are linear and independent
on each other (additive effects). Although the assumption of linear additive effects is
common in quantitative genetics and has theoretical justification in polygenic models
(Falconer, 1989; Khoury et al., 1993), it is worth to check whether these assumptions are
also valid in this particular case. For this purpose the method of contour plots was used in
this study (see Figures 1-2).
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Contour plots are the maps for the levels of offspring life span (graded from white color
for low life span levels to dark black color for high life span levels) as a function of
paternal life span (X-axis) and maternal life span (Y-axis). The levels of offspring life
span are calculated as deviations from the sex-specific cohort mean levels. Areas with
equal levels of offspring life span are connected by isolines. If offspring life span is
determined by maternal life span only, one should expect that isolines will have
horizontal orientation with more dark color on the top of the plot. On the contrary, if
offspring life span is inherited on paternal side only, the isolines will have vertical
orientation with more dark color on the right side of the plot. In the case when both
paternal and maternal life span have independent effects on offspring life span, the
isolines will have diagonal orientation so that white color (low levels for offspring life
span) will be concentrated in the bottom left corner of the plot, while dark black color
will be concentrated in the top right corner of the plot. In particular case when paternal
and maternal effects are strictly additive, the slope for diagonal isolines will be equal to
minus one, connecting the areas where the mean parental life span is constant. Although
contour plots are semi-quantitative by their nature and are limited in their ability to check
for statistical significance of the observed differences, they are very efficient for
visualization of the possible complex interactions between paternal and maternal life span
effects on offspring longevity. The results of this approach are presented at Figures 1-2.

Contour plot for sons (Figure 1) demonstrates strong vertical orientation of isolines in
the area of paternal life span above age 70. This result is consistent with earlier analysis
based on multiple linear regression model that has also detected the preferential paternal
inheritance of sons' longevity (see above, Tables 1,3). However, in the area of lower
levels of paternal life span (below age 70), the isolines are organized in a horizontal
manner indicating preferential maternal inheritance for sons' life span. In other words, the
isolines are organized in rectangular rather than diagonal manner that indicates strong
interaction between maternal and paternal life span effects (Figure 1).

The observed rectangular organization of isolines could explain many of previous
controversies on the relative importance of paternal and maternal life spans as predictors
for offspring longevity. Those authors who studied populations with low paternal life
span (below age 70) should observe preferential maternal inheritance of human longevity.
On the contrary, in populations with significant number of cases of high paternal life span
(above age 70) the preferential paternal inheritance of human longevity is observed (the
case of this study).

Contour plot for daughters (Figure 2) is different from the plot for sons (Figure 1). In
the case of daughters the isolines are organized more in diagonal rather than rectangular
manner indicating relatively equal importance of both paternal and maternal effects as
was also found through the multiple linear regression analysis (Tables 2, 4). However, the
isolines are not strictly diagonal (rectangular shape fragments are also observed) and the
contour plot does not support the model of additive independent effects of paternal and
maternal life span. In particular, if maternal life span is less than 65 years (common
situation for earlier historical periods with high female mortality), virtually no paternal
inheritance of life span is observed. On the contrary, if maternal life span is in the range
between 65 and 80 years, the paternal inheritance of life span is particularly high. Finally,
when maternal life span is above 80 years, the daughters' life span has weaker response to
paternal life span again. Thus, the effect of one parent depends on the effect of another
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parent indicating strong interaction between paternal and maternal effects on daughters'
longevity (Figure 2).

Although the contour plots for sons (Figure 1) and daughters (Figure 2) are different,
they have also some features in common. In particular, when the same-sex parent (father
for sons, mother for daughters) has long life span, the opposite-sex parent has little to
contribute into the offspring life span (some kind of longevity saturation is observed). On
the contrary, if the same-sex parent has short life span, the effect of the opposite-sex
parent is either absent (daughters) or greatly delayed (sons) indicating some kind of
longevity invalidity for the offspring born to short-lived same-sex parent (Figures 1-2).

The most interesting result of this study is that the maternal longevity effect does not
exceed the paternal one - in fact the opposite tendency is observed (for sons in particular).
This observation is surprising since mother has many different additional influences on
the offspring through specific inheritance of mitochondrial DNA, strong maternal-child
interaction during in utero development and later during the formative years of the child.
For this reason the maternal effect on offspring traits is usually higher than the paternal
one (Falconer, 1981). It is interesting that human longevity is an exception from this
common observation and in fact the paternal effects tend even to exceed the maternal
ones.

Paternal longevity seems to be a more important predictor of offspring life span than
maternal longevity both for sons and in some cases for daughters (see Tables 1-4). Since
this preliminary observation has important implications for testing different theories of
aging and longevity, it deserves to be studied more thoroughly on larger data sets.

In order to explain the paradoxically stronger paternal effect on human longevity, we
suggest the following hypothesis. In the case of mothers all recessive mutations could
affect their longevity in those rare cases only when they are in homozygous form. That is
why the long-lived mothers may carry essentially the same mutation load as the short-
lived mothers and the only difference for long-lived mothers might be more heterozygous
pattern for their mutation load. On the other hand in the case of fathers the mutations
affecting longevity could not be compensated (complemented by other alleles) if they are
located on X or Y chromosome. Thus, the relationship between genes and phenotypic
longevity should be more straightforward and simple for fathers than for mothers. That is
why the paternal longevity might be a better predictor for offspring longevity than the
maternal one.

According to our suggested explanation, the stronger paternal longevity effect is
related to male hemizygosity of genes on sex chromosomes and their higher selection in
males. There is one interesting prediction from this hypothesis that should be checked in
future studies - in families having centenarian grandfather from maternal side
(transmission of X chromosome) both daughters and sons could live longer while in
families with centenarian grandfather from paternal side (transmission of Y chromosome)
the sons should have more "familial longevity benefits" than the daughters.
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Table 1. Sons' life span as a function of paternal and maternal life span.
Parameters of the multiple linear regression model.

Linear regression slope ± standard error Model SummaryParental
age at death

(range)

Number of
cases in

regression Paternal effect Maternal effect

Difference
between paternal

and maternal
effects R Square F Ratio

30+ 8,228 0.089 ± 0.012*** 0.030 ± 0.010** 0.059 ± 0.016*** 0.018 50.2

40+ 7,426 0.103 ± 0.014*** 0.040 ± 0.013** 0.063 ± 0.019*** 0.019 48.2

50+ 6,211 0.113 ± 0.018*** 0.063 ± 0.017*** 0.050 ± 0.025* 0.019 39.5

60+ 4,508 0.115 ± 0.026*** 0.086 ± 0.025** 0.029 ± 0.036 0.015 22.5

70+ 2,114 0.136 ± 0.053* 0.046 ± 0.052 0.090 ± 0.074 0.014 9.8

75+ 1,057 0.165 ± 0.095 0.024 ± 0.090 0.141 ± 0.131 0.010 3.5

* - statistically significant at 0.05 level; ** - significant at 0.01 level; *** - significant at 0.001 level.
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Table 2. Daughters' life span as a function of paternal and maternal life span.
Parameters of the multiple linear regression model.

Linear regression slope ± standard error Model SummaryParental
age at death

(range)

Number of
cases in

regression Paternal effect Maternal effect

Difference
between paternal

and maternal
effects R Square F Ratio

30+ 3,222 0.047 ± 0.020* 0.045 ± 0.017** 0.002 ± 0.026 0.122 148.4

40+ 2,904 0.061 ± 0.023** 0.062 ± 0.021** -0.001 ± 0.031 0.118 129.9

50+ 2,415 0.086 ± 0.029** 0.091 ± 0.028** -0.005 ± 0.040 0.128 117.8

60+ 1,757 0.153 ± 0.043*** 0.115 ± 0.042** 0.038 ± 0.060 0.123 82.1

70+ 863 0.344 ± 0.081*** 0.062 ± 0.079 0.282 ± 0.113* 0.140 46.6

75+ 432 0.272 ± 0.138* 0.324 ± 0.136* -0.052 ± 0.194 0.146 24.5

* - statistically significant at 0.05 level; ** - significant at 0.01 level; *** - significant at 0.001 level.
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Table 3. Sons' life span as a function of paternal and maternal life span.
Standardized parameters of the multiple linear regression model.

Standardized
linear regression slope ± standard error

(Beta coefficients)
Model SummaryParental

age at death
(range)

Number of
cases in

regression Paternal effect Maternal effect

Difference
between paternal

and maternal
standardized effects Adjusted

R Square
Significance

30+ 8,228 0.079 ± 0.011*** 0.032 ± 0.011** 0.047 ± 0.016** 0.018 0.000***

40+ 7,426 0.085 ± 0.012*** 0.036 ± 0.012** 0.049 ± 0.017** 0.019 0.000***

50+ 6,211 0.080 ± 0.013*** 0.046 ± 0.012*** 0.034 ± 0.018 0.018 0.000***

60+ 4,508 0.065 ± 0.015*** 0.051 ± 0.015** 0.014 ± 0.021 0.014 0.000***

70+ 2,114 0.055 ± 0.021* 0.019 ± 0.022 0.036 ± 0.030 0.012 0.000***

75+ 1,057 0.053 ± 0.031 0.008 ± 0.030 0.045 ± 0.043 0.007 0.016*

* - statistically significant at 0.05 level; ** - significant at 0.01 level; *** - significant at 0.001 level.
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Table 4. Daughters' life span as a function of paternal and maternal life span.
Standardized parameters of the multiple linear regression model.

Standardized
linear regression slope ± standard error

(Beta coefficients)
Model SummaryParental

age at death
(range)

Number of
cases in

regression Paternal effect Maternal effect

Difference
between paternal

and maternal
standardized effects Adjusted

R Square
Significance

30+ 3,222 0.038 ± 0.016* 0.046 ± 0.017** -0.008 ± 0.023 0.121 0.000***

40+ 2,904 0.046 ± 0.017** 0.053 ± 0.018** -0.007 ± 0.025 0.118 0.000***

50+ 2,415 0.056 ± 0.019** 0.062 ± 0.019** -0.006 ± 0.027 0.127 0.000***

60+ 1,757 0.080 ± 0.023*** 0.062 ± 0.023** 0.018 ± 0.033 0.122 0.000***

70+ 863 0.135 ± 0.032*** 0.025 ± 0.032 0.110 ± 0.045* 0.137 0.000***

75+ 432 0.088 ± 0.045* 0.107 ± 0.045* -0.019 ± 0.064 0.140 0.000***

* - statistically significant at 0.05 level; ** - significant at 0.01 level; *** - significant at 0.001 level.


